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for two pairs of mappings satisfying (CLRg) property.
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1.INTRODUCTION

Fixed point theory has fascinated hundreds of researchers since 1922 with
the celebrated Banach’s fixed point theorem. This is a very active field of
research at present. In2011, Azam et al [6] introduced the concept of complex-
valued metric space. Recently, Sintunavarat and Kumam [15] introduced the
concept of (CLRg) property. Many results are proved on existence of fixed
points in complex-valued metric spaces, see [1,3-6,8,9,11,12,14,16,17]. An
interesting and detailed discussion on (CLRg) property is given by Babu and
Subhashini [7].

In this paper, we use the concept of (CLRg) property and prove a common
fixed point theorem for mappings satisfying (CLRg) property in complex-
valued metric space.

2. PRELIMINARIES

Let C be the set of complex numbers. Define a partial order = on C as
follows:

z, 3 z,if Re(z)) SRe(z,) ,Im(z) <Im(z,),

z, 3 z,if z; = z, and either Re(z;) <Re(z,), Im(z;) <Im(z,)
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or Re(z) <Re(z,), Im(z,) = Im(z,)

or Re(z))=Re(z,), Im(z,) <Im(z,)

Definition 2.1 ([6]). Let X be a nonempty set such that the mapd: X x X — C
satisfies the following conditions:

(cl) 0Z=d(x,y) forallx,ye X and d(x,y)=0iff x=1y ;

(c2) d(x,y)=d(y,x) forall x,yeX ;

(c3) d(x,y) 3 d(x,z)+d(z,y) forall x,y,z€X .

Then d is called a complex-valued metric on X and (X, d) is called complex-
valued metric space.

Definition 2.2 ([6]). Let (X,d) be a complex-valued metric space and x € X
. Then the sequence {x,} is said to converge to x if for every 0 < c € C , there
is a natural number N such that d(x,,x) < cforall ne N .

We write it as limx, =x.

n—oo

Definition 2.3 ([13]). An element (x,y) € X x X is called coupled coincidence
point of the mappings S: XXX —X and T:X — X if

S(x,y) =T(x), S(y,x) =T(y).

Definition 2.4 ([10]). An element x € X is called common fixed point of the
mappings S: XxX —-X and T: X — X if

x=S(x,x)=T(x)

Definition 2.5 ([2]). The mappings S: X xX — X and T:X — X are called
w-compatible if 7S(x,y) = S(Tx,Ty), whenever S(x,y)=1Tx, S(y,x)=Ty.
Definition 2.6 ([10]). The mappings S: X xX — X and T: X — X are called
commutative if 7S(x,y)=S(Tx,Ty), forall x,ye X .

Wenotethatthemaps S: X x X — X and T : X — X are weakly compatibleif
S(x,y)=T(x),5(y,x)=T(y)implies TS(x,y) = S(Tx,Ty), TS(y,x) = S(Ty,Tx)
forall x,ye X
Definition 2.7 ([15]). Let (X,d) be a metric space. Two mappings f:X — X
and g:X — X are said to satisfy (CLRg) property if there exists a sequence
{x,} C X such that

lim f(x,)= lim g(x,) = g(p) for some pe X .
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Definition 2.8 ([7]). Let (X,d) be a metric space. Two mappings
f:XxX—X and g:X— X are said to satisfy (CLRg) property if
there exist sequences {x,},{y,} C X such that

lim f(x,.y,) = lim g(x,) = g(p),

lim f(y,,x,)=lim g(y,) = g(q) , for some p,g € X .

Definition 2.9 ([14]). The “max” function for the partial order relation “=”
defined by the

(1) max{z,,z,} =z, if and only if z; 3 z,,

(2) If 7z, 3max{z,,z}, then 7, 3z, and 7, 3z,

(3) max({z,,z,} =z, if theonlyif 7z, 3z, or |z |3z, ].

Example 2.1. Let X =[0,00) be a metric space under usual metric. Define
mappings f: XxX— X and g: X — X by

f,y)=x+y+2,gx)=5+x, Vx,veX.

. 1
Let {x,} and {y,} be sequences in X where x, =3+— and y =3 _l.
Since n n
lim f(x,,y,)=lim(x, +y, +2)=8=g(3).,
. . 1 1

limg(x,)=1limg|3+—|=3+—-+5=8=g(3)

n—o< n—oo n n
and

lim f(y,,x,)=lim(y, +x, +2)=8=g(3),
. . 1
lim g(y,) = lim g[3 — —] =8=¢g(3)
n—oo n—oo n
So, the maps f'and g satisfy (CLRg) property.

3. MAIN RESULTS

Theorem 3.1. Let (X,d) be a complex valued metric-space and let
f,g:XxX— X and ¢,1: X — X are mappings such that
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(1) d(f(x,y),8u,v)) 3 pmax{d(ox,u),d(f(x,y),¢x),d(g(u,v),Pu),
d(f(x,y),1bu),d(g(u,v),px)}

for all x,y,u,veX and 0< p<1, (2) the pair (f,9) and (g,7)) are weakly
compatible.

If the pair (f,¢) and (g,v) satisfy (CLRg) property then f,g,¢ and ¢ have
a unique common fixed point, that is, there exists a unique x in X such that

fox)=vx=glx,x)=¢px=x.

Proof. Let (f,¢) and (g,v) satisfy (CLRg) property then there exist sequences
{x,}.{y,}, {x)} and {y’} in X such that

lim f(x,,y,) = lim ¢(x,) = pa (3.1)
lim f(y,,x,) = lim ¢(y,) = ¢3 (3.2)
lim g(x;, y,) = lim 9 (x;) = va’ (3.3)
lim g(y;.x,) = lim (y;) = ' (3:4)

for some o, 3,0/,8' € X .

Now we will show that (f,¢) and (g,%) have common coupled coincidence
point. For this, we will first show that ¢a = 1o’ .
Putting x=x,,y=1y,,u=x,,v=1y in condition (1) we get

d(f(x,,y,).8(x,y)) 2 pmax{d(¢x,,x),d(f(x,.y,)¢x,),d(g(x,,y}),¥x)),

d(f(x,,y,),0x)),d(g(x],y)),0x,)}

Taking limit as n — oo and using (3.1), (3.2), (3.3) and (3.4), we have
d(¢a,pa’) 3 pmax{d(pa,pa’),d(pa,¢a),d(a’,pa’),d(pa,pa’),d(pa’,¢a))
= d(pa,vpa’) 3 pd(paipa’)

= |d(¢a,ppa’)| < pld(pa,ipa’) |
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which is possible when ¢a = 1a’.

So ¢a = z/)o/ .

Similarly we can show that ¢3 =13’.
Now we will show that ¢3 =1’ .
For this, we put x=1y, ,y=x,,u=x,,v=1y' in condition (1), we get

d(f(y,.x,).8(x),y)) 3 pmax{d(®y, ¥x.),d(f(y,.x,)¢y,),d(g(x,,y.),¥x]),

d(f(y,,x,),0x)),d(g(x],y!),y,)}
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Taking limit as n — oo and using (3.1), (3.2), (3.3) and (3.4), we have

d(¢B,pa’) 3 pmax{d(¢p,pa’),d(¢B,¢0),d(a’ pa’),d(¢B.a’),d(Wa’,¢5))

= d(@B,a’) 3 pd(pa’,¢B)
= |d(¢6.9a")| < pld(pa’,¢3)]
which is possible when ¢3=1a’.
So ¢B=pa’ .
Similarly we can show that ¢a =3’ .
Hence
pa=pf=1pa’ =g’ (3.5)

Now we will show that ¢a = g(a’,3’) and ¢3=g(3',a’).
For this we put x=x ,y=y ,u=a’,v=/" in condition (1), we get

d(f(x,,y,).8(’,3") 3 pmax{d(¢x,,ipa’),d(f(x,,y,),0x,),d(g(a’,3"),pa’),

d(f(x,,,).9a)),d(g(a’,3),0x,)}

Taking limit as n — oo and using (3.1), (3.2), (3.3), (3.4) and (3.5), we have

d(pa,g(a’, ") 2 pmax{d(da,pa’),d(pa,pa),d(g(a’, 3),pa’),

d(pa,pa’),d(g(@’,8"),¢a)}
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= d(pa,g(@’,8") T pmax{0,0,d(g(a’,3"),¢),0,d(g(a’, 3"),pc)}
= d(¢0{,g(0&l,ﬂ/)) r—j pd((ba’g(a/’ﬁ/))

~  ld@ag@, 8] < pldga,g@’, 8]

which is possible when as pa = g(a/, ') as 0<p<I1 .
So ¢a=g(a',p") .
Similarly ¢8 = g(5’,a).

Now we will show that ya’ = f(a,8) and 3’ = f(8,a) -
For this we put x=a,y= 3,u=x/ and v=1y/ in condition (1), we get
d(f(a.),8(x,,y,)) 3 pmax{d(¢a,yx,),d(f(a, 8),pc),d(g(x,,y,),x,),

d(f (0, B),1px,),d(g(x;,y0),00)}
Taking limit as n — oo and using (3.1), (3.2), (3.3), (3.4) and (3.5), we have

d(f(a,B),1pa’) 3 pmax{d(¢pa,ppa’),d(f (e, B),pe),d(pa’,ppa),

d(f (o, B),9a’),d(ypa’,¢a))

= d(f(a,f),a’) 3 pmax{0,d(f (e, B),9a’),0,d(f(a, 3),1a),0}
= d(f(a.B),pa) 3 pd(f(e.B),1ba’)

= |d(f(c.B),pa")| < p |d(f(e,B),0a")]

possible when f(a,3)=1a’ as 0< p<1.

So f(a,B)=1a’.

Similarly f(8,a) =3’ .

Thus pa=¢B=1pa’ =B = f(a,B) = f(B,0) = g(a’,8") = g(8',a")

= ga',8)=pa=va’= f(a.p)

= 8B )y=¢3=9p" = f(B.a).
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Hence the pairs (f,®) and (g,%’) have common coupled coincidence point.

Now let f(o,B)=opa=g(d,f)=va’ =x
and f(B,0)=¢B=gBa)=ys =y .
Since (f,¢) and (g,v) are weakly compatible so

of(.B) = f(pa,9B) = f(x,y) and ¢ f(B,0) = f(9B,9a) = f(y,x),
but
fla,p)=x=¢f(a,0)=¢x

f(B.a)=y=¢f(B,0) =y
Therefore ¢x = f(x,y) and ¢y= f(y,x)

Similarly x = g(x,y) and ¢y = g(y,x) .
Hence

dx = f(x,y), ¢y = f(y,x) and Yx = g(x,y), Yy =g(y,x).

Now we will show that x = y.
Using condition (1), we get

d(x,y) = d(f(e,3),8(8",a")

3 pmax{d(¢pa,pB),d(f (e, 8),00),d(g(5',a), 15,
d(f (o, 3),98"),d(g(B',a),ha)}

- d(x,y) 2 pmax{0,0,0,0,0}
= |d(x,y)|=0
= X=Y

Now, we will prove that ¢x =x.
Using condition (1), we have

d(px,1hx) = d(f(x,y),8(x.y))

< pmax{d(ox,vx),d(f(x,y),¢x),d(8(x, y),¥x),
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= d(¢x,9x) 3 pmax{d(¢x,1x),0,0,d(¢x,9x),d(Yx,¢x)}

= |d(px,px)| < pld(@x,x) | <|d(dx,px)]

which is possible when ¢px =1vx as 0<p<1 .

So px=1x .

= J(xy)=¢x=1px=g(x,y)
Similarly ¢y =y and f(y,x)=g(y,x) .

Now we will show that ¢px = x .

Using condition (1), we get

d(x,0x) = d(f(c.0),8(x,y))
< pmax{d(¢a,¥x),d(f(a, 3),¢c),d(g(x,y),1)x),

d(f(a,),9x),d(g(x,y), )}

= d(x,¢6x) 3 pmax{d(x,¢x),d(f(a,B),pa),d(dx,vx),d(f(a, B),vx),d(g(x,y),pa)}
= d(x,¢x) 3 pmax{d(x,$x),d(x,x),d(px,x),d()x,x),d(dx,x)}
= d(x,¢x) 2 pmax{d(x,$x),0,0,d(¢x,x),d(px,x)}

= | d(x,¢x)|< pmax |d(x,¢x)|

which is possible when x =¢x as 0< p <1 .

So x=¢ux.

Hence f(x,x)=vYx=gx,x)=¢x=x.

Thus f,g,¢ and ¢ have a common fixed point.

Now to prove uniqueness, let y be any other common fixed point of f,g,¢
and .

= f.y)=vy=g(y.y)=¢y=y-
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Then  d(x,y) =d(f(x,x),g(y,y))
< pmax{d(ox,1y),d(f(x,x),0x),d(8(y, y),¥y),

d(f(x,x),y),d(g(y,y),¢x)}
= d(x,y) 3 pmax{d(x,y),d(x,x),d(y,y),d(x,y),d(y,x)}

= |d(x,y)| < pld(x,y)]

which is possible when x=y as 0<p<1.

So xX=y.

Hence f,g,¢ and v have unique common fixed point.

Example 3.1. Let X = R be a complex valued metric space equipped with the
complex valued metric space d(x,y)=|x—y|i.

Let f: XXX — X and g: X xX — X be defined for all x,y€ X as

xX—=y . x—
if x>y
f('x’y): 8 ,"'g(x’Y): 10

0 if x<y 0 if x<y

if x>y

Let ¥: X — X and ¢: X — X be defined as

X X
- .. =2 ..., forall xeX.
Y(x) > P(x) 30’

It is easy to check that all conditions of Theorem 3.1 are satisfied for all
x,y,u,v € X . Thus, we have x =0 is the unique common fixed point of f,g,¢
and .

Ifg=f and 1) = ¢ in Theorem 3.1 then we have the following corollary:
Corollary 3.1. Let (X,d) be a complex-valued metric-space and let
f:X*— X and ¢:X — X are mappings such that

(D d(f(x,y), f(u,v) < pmax{d(ox,¢u),d(f(x,y),¢x),d(g(u,v),ou),

d(f(x,y),ou),d(f (u,v),¢x)}

for all x,y,u,veX and O0<p<1,
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(2) the pair (f,¢) is weakly compatible.

If the pair (f,®) satisfy (CLRg) property then there exists a unique , in X such
that f(x,x)=¢x=x.
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