Math. J. Interdiscip. Sci.

Mathematical Model for Impact of Media on Cleanliness Drive in India

Nita H. Shah, Jaydev S. Patel, Foram A. Thakkar and Moksha H. Satia

  • Download PDF
  • DOI Number

Mathematical model; Active cleaners; Passive cleaners; Media; Simulation

PUBLISHED DATE September 6, 2018
PUBLISHER The Author(s) 2018. This article is published with open access at

A mathematical model on cleanliness drive in India is analysed for active cleaners and passive cleaners. Cleanliness and endemic equilibrium points are found. Local and global stability of these equilibrium points are discussed using Routh-Hurwitz criteria and Lyapunov function respectively. Impact of media (as a control) is studied on passive cleaners to become active. Numerical simulation of the model is carried out which indicates that with the help of media transfer rate to active cleaners from passive cleaners is higher

Page(s) 29-36
ISSN Print: 2278-9561, Online: 2278-957X
  • O. Diekmann, J. A. P. Heesterbeek & M. G. Roberts, (2009). The construction of next-generation matrices for compartmental epidemic models. Journal of the Royal Society Interface, 7(47), 873-885
  • W. H. Fleming & R. W. Rishel (1975). Deterministic and stochastic optimal control (Vol. 1). Springer Science & Business Media.
  • Musofer, Muhammad Ali,Importance of cleanliness, Scribe Publishing Platform,
  • J. P. La Salle (1976). The Stability of Dynamical Systems, Society for Industrial and Applied Mathematics, Philadelphia, Pa.
  • L. S. Pontriagin, V. G. Boltyanskii, R.V. Gamkrelidze, E. F. Mishchenko (1986). “The Mathematical Theory of Optimal Process”, Gordon and Breach Science Publishers, NY, USA, 4–5.
  • Pitabas Pradhan (2017). “Swachh Bharat Abhiyan and the Indian Media” Journal of Content, Community & Communication, 5(3), 43–51.
  • Edward John Routh (1877). A treatise on the stability of a given state of motion: particularly steady motion. Macmillan and Company.
  • Nita H. Shah, Moksha H. Satia & Bijal M. Yeolekar (2018). Stability of ‘GO-CLEAN’ Model Through Graphs. Journal of Computer and Mathematical Sciences, 9(2), 79–93.