MJIS

On χs-Orthogonal Matrices

K. Jaikumar, S. Aarthy and K. Sindhu

KEYWORDS

χs-orthogonal matrices, s-unitary matrices, s-normal matrices.

PUBLISHED DATE September 2017
PUBLISHER Chitkara University
ABSTRACT

In this paper we, introduced the concept of χs-orthogonal matrices and extended some results of Abara et al, [3] in the context of secondary transpose.

Page(s)
URL http://dspace.chitkara.edu.in/jspui/bitstream/123456789/688/1/K.%20JAIKUMAR.pdf
ISSN 2278-957X
DOI 10.15415/mjis.2017.61005
REFERENCES
  • Anna Lee, Secondary symmetric, skew symmetric and orthogonal matrices, Periodica Mathematica Hungarica, 7(1)(1976), 63-70.
  • Anna Lee, On s-symmetric, s-skew symmetric and s-orthogonal matrices, Periodica Mathematica Hungarica, 7(1)(1976), 61–76.Ma. Nerissa M. Abara, Dennis I. Merino and Agnes T. Paras, s -Orthogonal Matrices. Linear algebra and its Applications, 432(2010), 2834–2846.S. Krishnamoorthy and K. Jaikumar, Secondary orthogonal similarity of a real matrix and its secondary, International Journal of Mathematics and Soft Computing, 2(1)(2012), 51–55. S. Krishnamoorthy and K. Jaikumar, On s-orthogonal matrices. Global Journal of Computational Science and Mathematics, 1(1)(2011), 1–8.