REFERENCES 
 Boit, M. A., 1956, “Thermoelasticity and irreversible thermodynamics”, J. Appl. Physics, Vol. 27, pp. 240 – 253.
 Nowacki, W., 1975, Dynamic Problems of Thermoelasticity, Noorath Off. Leyden, The Netherlands.
 Lord, H. W. and Shulman, Y., 1967, “A generalization of dynamical theory of thermoelasticity”, J. Mech. Physics of solids, Vol. 15, pp. 299–309.
 Green, A. E. and Lindsay, K. A., 1972. “Thermoelasticity”, J. of Elasticity, Vol. 2, pp. 1–7.
 Green, A. E. and Naghdi, P. M. 1993. “Thermoelasticity without energy dissipation”, J. Elasticity, Vol. 31, pp. 189–208.
 Chandrasekharaiah, D. S. 1999. Thermoelasticity with thermal relaxation: An alternative formulation. Proc. Indian Acad. Sci. (Math. Sci.). 109: 95–106.
 Tzou, D. Y. 1995. A unified approach for heat conduction from macro to micro scales. J. Heat Transfer. 117: 8–16.
 Sherief, H.H. and ElMaghraby, N. M., 2003, “An internal pennyshaped crack in an infinite thermoelastic solid”, J. Therm. Stresses, Vol. 26, pp. 333–352.
 R. S. Dhaliwal, A. Singh, 1980, “Dynamic Coupled Thermo elasticity”, Hindustan Pub. Corp., New Delhi.
 K. F. Graff, 1975, “Wave Motion in elastic Solids, Dover Publications” INC, New York. Oxford University Press.
 Othman, M. I. A. and Singh, B. 2007, “The effect of rotation on generalized micropolar thermoelasticity for a half space under five theories”, Int. J. solids structures, Vol. 44, pp. 2748–2762.
 Sharma, J. N., Chand, R. and Chand, D. 2007, “Thermoviscoelastic waves due to time harmonic loads acting on the boundary of a solid half space”, Int. J. of Applied Mechanics and Engineering, Vol. 12(3), pp. 781–797.
 Mukhopadhyay, S. 2000, “Effect of thermal relaxation on thermoviscoelastic interactions in unbounded body with spherical cavity subjected periodic load on the boundary”, J. Therm. Stresses, Vol. 23, pp. 675–684.
 Sharma, J. N. 2005, “Some considerations on the RayleighLamb wave propagation in viscothermoelastic plates”, J. Vib. Cont., Vol. 11(10), pp. 1311– 1335.
 Bland, D. R., 1960, “The theory of linear viscoelasticity” Pergamon Press,
 Hunter, C., Sneddon L. and Hill R., 1960, “Viscoelastic waves (in progress in solid mechanics)”. Wiley Interscience, New York.
 Flugge, W., 1967, “Viscoelasticity”, Blaisdell, London.
 Tripathi, J. J., Kedar, G. D. and Deshmukh, K. C., 2014, “Dynamic problem of generalized Themoelasticity for a Semiinfinite Cylinder with heat sources”, J. Thermoelasticity, Vol. 2, pp. 1–8.
 Sharma, D. K., Parkash, I., Dhaliwal, S. S., Walia, V. and Chandel, S., 2107, “Effect of magnetic field on transient wave in viscothermoelastic half space”, Int. J. Comp. Appl. Mathematics, Vol. 12, pp. 343–364.
 Sharma, D. K., Mittal, H and Parkash, I., 2017, “Deformation of viscothermoelastic semi infinite cylinder with mechanical sources and heat sources”, Global J. Pure and Appl. Mathematics, Vol. 13, pp. 4909–4925.
 Samia, M. S., “A fiberreinforced thermoelastic medium with an internal heat source due to hydrostatic initial stress and gravity for the threephaselag model”, Multidiscipline Modeling in Materials and Structures, Vol. 13, pp.83–99.
 Gaver, D. P., 1966, “Observing Stochastic processes and approximate transform inversion, Operation Research”, Vol. 14, pp. 444–459.
 Stehfast, H., 1970, “Remark on algorithm 368, Numerical inversion of Laplace transforms”, Comm. Ass’s Comp. Vol.13, pp. 624.
 Wider, D. V., 1934, “The inversion of Laplace Integral and related moment problem”, Trans. Am. Math. Soc., Vol. 36, pp. 107–200.
 Press, W. H., Flannery, B. P., Teukolsky, S. K. and Vettering W. T. 1986, “Numerical Recipes”, Cambridge University Press, Cambridge, the art of scientific computing.
