MJIS

Effect of Non-uniform Temperature Gradient on Marangoni Convection in a Relatively Hotter or Cooler Layer of Liquid

A.K. Gupta and S.K. Kalta

KEYWORDS

Convection; Conducting; Insulating; linear stability; Surface tension.

PUBLISHED DATE
PUBLISHER
ABSTRACT

the effect of non-uniform temperature gradient on the onset of convection driven by surface tension gradients in a relatively hotter or cooler layer of liquid is studied by means of linear stability analysis. the upper boundary is considered to be free and insulating where surface tension gradients arise on account of variation in temperature and the lower boundary is rigid. the single-term Galerkin technique is used to obtain the eigenvalue equation. Eigenvalues are obtained and presented for both thermally conducting and insulating cases of the lower boundary. this analysis predicts that in either case the critical eigenvalues for different non-uniform temperature gradients are greater in a relatively hotter layer of liquid than the cooler one under identical conditions otherwise. this qualitative effect is quite significant quantitatively as well.

Page(s)
URL http://dspace.chitkara.edu.in/jspui/bitstream/1/687/3/42010_MJIS_Gupta.pdf
ISSN
DOI 10.15415/mjis.2016.42010
REFERENCES
  • Banerjee, M. B., Gupta, J. R., Shandil, R. G., Sharma, K. C. and Katoch, d. C. A modified analysis of thermal and thermohaline instability of a liquid layer heated underside. Jour. Math. phy. Sci. 17, 603-629, (1983).
  • Bannister, t. C., Grodzka, p . G., Spradley, l. W., Bourgeois, S. V., Heddon, R. O. and Facemire, B. R. Apollo 17 heat flow and convection experiments. Final data analysis results. N.A.S.A. tech. Memo. X-64772, (1973).
  • Bénard, H. les tourbillions cellulaires dans une nappe liquide transportant de la chaleur par convection en régime permanent. Revue générale des Sciences pures at appliqués 11, 1261-1271, (1900). figure 4: Critical Marangoni number as a function of thermal depth ε when α 20 03 T = ,.
  • Bénard, H. les tourbillions cellulaires dans une nappe liquide transportant de la chaleur par convection en régime permanent. Annales de. Chimie et de physique 23, 62-144, (1901).
  • Block, M. J. Surface tension as the cause of Bénard cells and surface deformation in a liquid film. Nature 178, 650-51, (1956).
  • Chandrasekhar, S. (1981) Hydrodynamic and Hydromagnetic Stability. dover, New York.
  • Chiang, K. t. Effect of a non-uniform basic temperature gradient on the onset of Bénard-Marangoni convection: Stationary and oscillatory analysis. International Communications in Heat and Mass transfer 32(12), 192-203, (2005).
  • Finlayson, B.A. (1972) the Method of Weighted Residuals and Variational principles with Applications in Fluid Mechanics, Heat and Mass transfer. Academic press Inc. (london) ltd., New York.
  • Gupta, A. K. and Shandil, R. G. Marangoni convection in a relatively hotter or cooler liquid layer. proc. Natl. Acad. Sci.., India, Sect. A phys. Sci. 82(2), 103- 106 , (2012).
  • Koschmieder, E. l. Bénard cells and taylor vortices. Cambridge university press, Cambridge, (1993).
  • lebon, G. and Cloot, A. Effects of non-uniform temperature gradient on Bénard- Marangoni instability. Journal of Non-Equilibrium thermodynamics , 61(1), 15-30 , (1981).
  • Nield, d. A. Surface-tension and buoyancy effects in cellular convection. J. Fluid Mechanics 19, 571-574, (1964).
  • Nield, d. A. the onset of transient convective instability. J. Fluid Mechanics 71, 441-454, (1975) .
  • Normand, C. pomeau, Y and Velarde, M. G. Convective instability: A physicist ’ s approach. Rev. Mod. phys. 49, 581-624, (1977).
  • pearson, J. R. A. “On convection cells induced by surface tension”, J. Fluid Mech., 4, 489-500, (1958).
  • Rayleigh, l. On convection currents in a horizontal layer of fluid, when the higher temperature is underside. phil. Mag. 32, 529-546 , (1916).
  • Rudraiah, N and Siddheshwar, p .G. Effect of non-uniform basic-temperature gradient on the onset of Marangoni convection in a fluid with suspended particles. Aerospace Science and technology 4(8), 517-523, ( 2000) .
  • Schatz, M., Vanhook, S., Mccormick, W., Swift, J. and Swinney, H. Onset of surface-tension-driven Bénard convection. phys. Rev. lett . 75, (1938-1941) , (1995).